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A fully three-dimensional turbulent separated flow was set up such that it had
a systematic link to two-dimensional flow, as a way of investigating the more
complicated nature of this flow type. The central region of the flow was fully
three-dimensional, but was bounded on its sides by regions of ‘spanwise invariance’
in which the flow was invariant in the lateral direction, or very nearly so. A
special case of spanwise invariance, which is statistically two-dimensional, is one
in which the streamlines are also coplanar, or at least nominally so in numerous
experimental studies. Another aspect of the present arrangement is that the side
regions should ideally provide well-defined boundary conditions. The separation
was formed downstream of a doubly swept normal flat plate, forming a ‘v’-shaped
separation line, mounted on the front of a splitter plate, mounted in the centre
of the wind tunnel working section. The predominantly inward flow to the central
region implies a negative lateral strain rate (∂W/∂z), but all nine strain rates are
non-zero. Measurements were made using pulsed-wire anemometry techniques for
mean velocities, Reynolds stresses and wall shear stress. Even though the sweep
angle is mild at ±10◦, the effect is to increase the bubble height by over 50 % in
its centre to create a ‘bulge’, symmetrical about the centreline. The degree of three-
dimensionality is described as moderate in that the peak inflow velocity from the side
regions is less than 0.2 of the free-stream velocity, but comparable with the peak in
the reverse-flow velocity. A larger sweep angle would give a larger inflow velocity.
A separate study (Cao & Hancock, Eur. J. Mech. B/Fluids , vol. 23, 2004, p. 519)
has shown that the bulge persists very far downstream, so that accurate physical
modelling of the separated region is likely to be important in modelling the flow well
downstream. An intermediate region exists between the invariant side region and the
bulge, where all the stress levels are reduced, as would be expected from the effects
of streamline convergence. Although overall there is a flow inward to the centre
(streamline convergence), part of the overlying shear layer is subjected to diverging
flow and an intensification of Reynolds stresses near the centre of the bulge.

1. Introduction
There have been numerous detailed studies of turbulent reattaching separated flow,
experimental, numerical and analytical. These can be categorized as ones in which the
separation is either from a sharp edge or from a smooth surface where the boundary
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‡ Email address for correspondence: P.Hancock@surrey.ac.uk



342 J. R. Hardman and P. E. Hancock

layer immediately upstream of separation is laminar, transitional or turbulent, and
whether the reverse flow is weak or strong. They can also be categorized as ones in
which the flow is two-dimensional, of which there are two types, or three-dimensional,
and as ones in which the flow is essentially an internal flow or an external flow.
Further factors include the presence of free-stream turbulence, compressibility, surface
roughness, free-stream unsteadiness and so on. Most flows of practical concern are
significantly even if not strongly three-dimensional, but the complexity of turbulent
flows in general has meant that most attention has been confined to flows that are two-
dimensional in the mean. A prime example here must be the low-speed zero-pressure-
gradient turbulent boundary layer in the search for universal and incontrovertible
scaling laws.

The two types of two-dimensionality are both spatially two-dimensional, but in
one, one component of mean velocity W, say, is zero everywhere, and therefore all
the mean streamlines lie on planes perpendicular to direction of W, so these flows
might be described as ‘coplanar’. A chief characteristic of this flow, which is usually
associated with the term ‘two-dimensional’, is the invariance of all quantities in the
direction of W, and leads to the other type in which W is non-zero but all quantities
remain invariant in the direction of W. This latter type, three-dimensional in a
restricted sense, might be described as non-coplanar two-dimensional. Both types can
be described as laterally or spanwise invariant. Kaltenback & Janke (2000), who give
direct numerical simulation of flow behind a swept, rearward-facing step, cite several
studies.

The present flow is in the class of sharp-edge separation, with a very thin laminar
boundary layer upstream of the separation line, formed by a bluff body. Its specific
coplanar, two-dimensional counterparts have been studied in detail by Ruderich &
Fernholz (1986), Castro & Haque (1987), Jaroch & Fernholz (1989), Hancock (2000)
and Ciampoli & Hancock (2006), where the last work revisited the issue of the
conditions necessary for negligible end effects. In these studies the separated flow
was strong in Fernholz’ classification (Fernholz 1994). Di Mare & Jones (2003)
compare large eddy simulation predictions, assuming spanwise invariance in the
lateral boundary conditions, with the spanwise-invariant measurements of this study,
with good overall agreement. A prime intention in the work here is to provide an
improved understanding of the physics of three-dimensional separated flow in which
the flow is predominantly stress driven. A directly related intention is to provide a
basis for testing and improving physical models.

The flow in this study (Hardman 1998) was formed behind a doubly swept
separation line, as shown in figures 1 and 2 where, conceptually, the overall
width is sufficient for flow either side of the central ‘v’ region to be spanwise
invariant. Further out, the flow is affected by the presence of the wind tunnel
sidewalls, as can be seen in the surface streamlines of figure 2. The flow in the
central region is fully three-dimensional, but the strength of the three-dimensionality
decreases with increasing distance from the centreline until it has reached that in
the very nearly invariant ‘side’ regions. Such a flow which, incidentally, appears to
be symmetrical about the centreline, provides a canonical type of flow in that it
provides a systematic extension of the special case of spanwise-invariant flow, of
which the coplanar flow is an even more specialized case. Another feature of the
presence of the spanwise-invariant regions is that they should provide well defined
boundary conditions for both time-averaged and time-resolved calculations, avoiding
the need to consider the complex interactions with the wind tunnel sidewall boundary
layers.
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Figure 1. Illustration of rig and sketch of streamlines.
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Figure 2. Surface streamlines on splitter plate.

Now although a flow geometry might be two-dimensional it is not always the case
that the time-averaged flow is two-dimensional. (One example is that of the wide-angle
symmetrical diffuser in which the flow separates from one diffuser wall and not the
other.) The idea of using spanwise-invariant regions stemmed from other work which
exhibited spanwise-invariance provided the flow width was large enough for end
effects to have become negligible. These other sources include Sutton, Devenport &
Barkey Wolf (1991) and Hancock & McCluskey (1996), and also confirmed in the
work of Cao (2002) and Cao & Hancock (2004). Thus, it is expected that had the
present flow been made wider still, all else constant, the extent of the region of
spanwise invariance would also have been wider. The experiments of Sutton et al.
(1991) also found the flow to be very sensitive to small imperfections in the edge of
their bluff thick plate, and the same was found by Cao (2002), the former finding the
sensitivity to be larger at higher sweep angles (up to the highest tested of 45◦). This
suggests that in some instances the absence of invariance might have been caused by
imperfections in the experimental rig or flow quality.
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A spanwise-invariant flow, as in the ‘side regions’ of figures 1 and 2, has a crossflow
component (as is straightforward to argue), so that there is an ‘inflow’ into the central
region from the sides. As a consequence the height of the separated flow is larger in
this central region where, as will be seen, the lateral extent of this enlarged bubble
is comparable with its height, giving the bubble a bulge-like appearance. The use of
the word ‘moderate’ in the title of this paper is based on the inflow velocity being
an order of magnitude smaller then the free-stream velocity, but with an increase in
bubble height of order unity. In a spanwise-invariant flow time-averaged separating
streamlines are also reattaching streamlines, but this is not the case in general, so
that for the flow here the time-mean separating streamlines in the central region
do not reattach but remain above the surface, marking out this bulge. However,
a line of attachment exists and so the free-shear layer that bounds the outer part
of the separated region can be said to reattach. Arguably, the term separation
bubble only makes sense if, in a time-averaged sense, the separating streamlines are
also reattaching streamlines, so that the (time-averaged) flow beneath the stream
surface (formed from the separation streamlines) remains separate from that above.
Nevertheless, it is convenient still to use this term as a short-hand for a flow that
reattaches. For a more detailed discussion for streamline topology see Perry & Fairlie
(1974).

Cao (2002) and Cao & Hancock (2004) investigated the same type flow as that
here, except that the separation lines were swept at larger angles, of ±25◦ (and that
it was formed on a bluff thick plate). The purpose of that work was to study the
flow as it developed to distances well downstream of reattachment, the bluff plate
providing an easy way to generate the smaller separation bubble needed to obtain
the required relative development distance in the wind tunnel used. A larger sweep
angle than that here was used to give a stronger degree of three-dimensionality and
a more distinctive downstream flow. However, there is no reason to believe that the
general observations would have been different had a smaller sweep angle been used.
They found the bulge to be very persistent, its size and relative shape changing little
in 23 reattachment lengths, and suggested it would require a distance an order of
magnitude longer before the bulge disappeared into the background of the adjacent
boundary layers. The bulge itself has wake-like characteristics in the mean flow, and
much higher levels of Reynolds stress than in a two-dimensional (spanwise-invariant)
reattaching flow. Well downstream, some Reynolds stresses (u2 and uv) in the bulge
fall below those in a standard boundary layer, as also observed by Castro & Epik
(1998) in a two-dimensional coplanar flow. See also the paper of Song, de Graaff &
Eaton (2000). Interestingly, there is a region of nearly constant shear stress beneath
the bulge even though uv rises to much higher levels further out. The characteristics
of this very persistent bulge have their origins in the bulge that is created in the
separation bubble, and so accurate physical representation of these persistent features
will quite likely depend upon the accurate physical representation of the separated
flow; history effects are likely to be dominant.

The velocity measurements presented here were obtained using pulsed-wire
anemometry, including measurements in the near-wall region by means of a special
through-wall pulsed-wire probe. However, as the near-wall measurements have been
presented in an earlier paper by Hardman & Hancock (2000), in an investigation
of the near-wall layer, they are not discussed here in detail. Hardman and Hancock
defined the near-wall layer as one in which the viscous no-slip condition is directly
evident in the mean velocity profiles. The thickness of this viscous layer was about
0.05 bubble lengths (but expected to be dependent upon Reynolds number, of course.)
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Further analysis of the near-wall layer, and in particular the Reynolds stresses and
higher order moments, is given by Hancock (2005, 2007). Those papers explore the
idea that each Reynolds stress has its own velocity scale. For the normal stresses
tangential to the surface (u2 and w2), these scales are friction velocities, u′

τ and w′
τ ,

based on the root mean square (r.m.s.) of the respective wall shear stress fluctuation.
Although the measurements given there were made in a two-dimensional coplanar
flow, the scaling arguments are likely to apply more generally.

The overlying shear layer of the separation bubble entrains fluid from both above
and below. The entrainment on the ‘low-speed’ side (i.e. from below) is provided by
the reverse flow. This is why the reverse flow exists, but the presence of low pressure
inside the earlier part of the bubble must assist in driving the reverse flow. If (in a
two-dimensional flow) there was very little entrainment required by the shear layer
the reattachment would be a long-way downstream (and at infinity in the absence of
any entrainment mass flow or influence of pressure). In the case here some of the
entrainment ‘source’ flow to the bulge is provided by the inward-going reverse flow
from the adjacent side regions. Therefore, it is to be anticipated that the position
of the attachment line should, all else constant, be further downstream than in a
two-dimensional flow, as indeed is observed.

2. Flow rig and measurements techniques
As mentioned earlier and illustrated in figures 1 and 2, the separated flow was
generated behind a vertical flat plate, made in two parts, mounted on the front of
a horizontal, v-shaped splitter plate. The vertical plates were swept symmetrically
with respect to the free-stream flow direction at angles of ±10◦. The sharp tips of
the vertical plates were very slightly blunted in a grinding machine to give a closely
controlled ‘fence’ height hf of 10.0 mm above and beneath the splitter plate surfaces.
The splitter plate was 3.0 mm in thickness and 1m in length at the sides. A flap,
0.5 m in length, at the rear of the plate was inclined slightly to make the bubbles
above and below the splitter plate equal in size. The model was mounted on slender
legs and spanned the whole width of the working section of wind tunnel ‘B’ of the
wind tunnel laboratory, where the working section was 0.5 m high, 1.53 m wide and
2.5 m in length. The contraction and working section of this blow-down wind tunnel
were rebuilt to give a working section of these dimensions specifically for this study
in order to provide sufficient flow width in relation to bubble size, and thereby to
keep end effects acceptably small. In this compromise, the bubble size was kept as
large as possible so as to minimize the relative size of the pulsed-wire probes. A still
greater flow width would have been at the expense of reduced working section height
(to maintain flow speed and wind tunnel contraction ratio) and increased blockage –
the ratio of hf to working section half height. Improvements were made to the
wide-angle diffuser between the fan and settling chamber, by means of an additional
screen, to eliminate a separation (that was probably present prior to the changes) on
a diffuser wall. Mean flow uniformity in the working section was better than ±1 %
and the background turbulence level (streamwise intensity, u′/U ) was better than
0.3 %, though some of this measured level would have been electronic noise. Some
measurements were also made behind an unswept fence of the same height, to provide
a reference check on techniques and instrumentation, and behind a v-shaped fence of
smaller height, though there is no need to report these here.

The flow width in relation to the bubble length at which the measurements were
made was based on earlier measurements (Hancock & Castro 1993). They suggested
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this ratio should be not less than about 4 for an unswept flow, the present flow being
regarded, perhaps simplistically, as two such flows side-by-side, at least for moderate
sweep angles. ‘End effects’ are largest near the surface, where residual lateral pressure
gradients formed in the flow above exert their influence. The more recent study of
Ciampoli & Hancock (2006), indicates (assuming the side-by-side equivalence) that
the largest residual influence will have been in the mean wall shear stress, with an
error of +2 %. The large eddy simulation by di Mare & Jones (2003), assuming
spanwise invariance, and its good agreement with the present measurements regarded
as spanwise invariant, namely those at z = 380 mm (see later), adds further support
that the flow width was adequate. Surface flow visualization, interpreted in figure 2,
showed the region of invariance to exist between z ≈ 300 mm and z ≈ 480 mm, and
likewise on the opposite side. It is possible that some flow features may not have
been fully free of end effects, but it is believed the associated discrepancy is small.

The free-stream reference velocity Ur in the upstream flow was 5.8 m s−1 throughout,
giving a Reynolds number based on hf of 3900. A low sweep angle (±10◦) was used
because, as will be seen and as already mentioned, even this resulted in a large effect in
the central region. One drawback of the relatively weak crossflow was that special care
was needed to measure the lateral velocity W with adequate accuracy. Also, although
swept laminar boundary layers exhibit crossflow instability if the crossflow Reynolds
number and sweep angle are large enough (Poll 1985), the present low sweep angle
and Reynolds number means that crossflow instability is not expected to be present.

At separation the boundary layer was laminar, but the shear layer in this type
of flow rapidly becomes turbulent through the Kelvin–Helmholz mechanism (see
e.g. Yang & Voke 2001). Ruderich & Fernholz (1986) chose a Reynolds number of
hf Ur/ν of 14 × 103 as being sufficient for ‘high’-Reynolds-number flow. Measurements
by Hancock (2000) confirmed significant variation in u2 below this Reynolds number,
the variation being larger as the Reynolds number was decreased, but argued that
the other Reynolds stresses were less affected from the fact there was very little
influence on mean velocity profiles, bubble length, surface pressure distribution and
some turbulence parameters. The present flow is expected therefore to have had some
residual Reynolds number dependence in some quantities; a higher Reynolds number
would have required a larger wind tunnel if probe resolution was not to be degraded.

Instantaneous velocity and wall shear stress were measured by means of pulsed-
wire anemometry, where the velocity was measured using one or other of two probes.
One of these, the ‘field’ probe, was held from a five-component traversing mechanism
mounted above the roof of the working section. The other, the ‘through-wall’ probe,
was mounted in a plug supported by the splitter plate and controlled from the
underside of this plate by means of a micrometre head allowing a position accuracy
of better than 0.1 mm. Based on the work of Castro & Dianat (1990) and Schober,
Hancock & Siller (1998), the pulsed wire was parallel to the surface and the sensor
wires were perpendicular, the prongs passing through small holes in the surface of
the plug which was flush with the plate surface. The probe had a maximum reach
of 12 mm above the plate surface, complementing the minimum height of 5 mm at
which the field probe could be held. The pulse and sensor wires of the probes were,
respectively, 9 μm and 2.5 μm in diameter, and about 6 mm in length. The sensor
wires were about 1.8 mm apart. The probes were driven by a Pela Flow Instruments
unit, with a sensor current of 2 mA and a pulse duration of 4 μs. Results from the
through-wall probe have already been reported (Hardman & Hancock 2000) in an
analysis of the near-wall layer. Some of these measurements will be included here,
but not with special discussion, therefore.
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The velocity probe was calibrated against a Pitot-static reference probe, with the
calibration fitted by a polynomial of the form U = A(1/T ) + C(1/T )3, where U is
velocity, T is the time of flight and A and C are constants (see e.g. Castro & Haque
1987). U was in the range 0.2–7 m s−1. The error in the streamwise and lateral
velocities, U and W, were to within about ±1 % and ±2 % respectively as fractions
of the reference velocity Ur . A number of probe configurations were tried before a
final set was established. By using a dummy probe it was found that presence of the
probe body, held vertically, had a measurable interference effect when it was near
the reattachment position. To reduce this effect the probe body was made as slender
as possible, and the fence height as large as possible without eliminating the side
regions of spanwise invariance. The probe body diameter was 1.5 mm over the 85 mm
nearest to the probe head, followed by diameters of 3 mm and 4 mm over the next
two lengths of 85 mm. The influence on the reattachment length for the probes used
was less than 3 %.

Pulsed-wire probes measure only one component of velocity (or wall shear stress),
the component that is perpendicular to the plane defined by the pulsed and sensor
wires. The probe therefore has to be rotated to several positions in order to measure
more than one component and more than one higher order moment. Rotation
about the vertical axis (the y-axis) to give W, w2, uw, etc. was very straightforward.
Rotation about the horizontal z-axis to give V, v2, uv, etc. was also straightforward
as the probe traversing mechanism provided pitch control, though it meant moving
the probe traversing mechanism in a streamwise position and adjusting the height
in order to keep the probe head at a fixed position. After some trials, this method
was considered preferable to one using more than probe, held vertically, but with
the probe head of each set at a fixed angle (e.g. 30◦) from the vertical, as at least
two other probes would have been required, and each would have required separate
calibration.

The sensor wires were ‘offset’ at an angle of about 25◦ to the normal to the probe
plane, to avoid the wake of one on the other during calibration (Castro & Haque
1987). Ideally, the yaw and pitch calibration of the probe is cosinal where, here, yaw
and pitch refer to rotation of the probe head about the y and z axes, respectively.
Castro & Cheun (1982) provide an analytical estimate of the errors arising from
imperfect response, which particularly affects the Reynolds stresses and higher order
moments. The yaw and pitch responses (the latter partly inferred from the probe’s
construction) exceeded ±80◦. The parameter ε of Castro and Cheun was in the range
0 < ε < 0.03, implying a much closer cosinal response than that considered typical in
that paper. The implied error in mean velocity is around 1.5 % of the local mean
velocity. Errors in u2 are estimated to be within about ±5 % while the errors in v2,
w2 and uv are within about ±10 %. The vertical velocity v could not be measured
below y = 5 mm. Velocity gradient effects are only significant near the surface, when
u′

τ y/ν is 10 or less (Hancock 2005), and are not relevant to the results presented here.
The wall shear stress probe comprised two sensor wires of 2.5 μm diamater, about

1 mm apart and 2.3 mm length, and a 5 μm diameter pulsed wire, 3.3 mm in length, all
held about 50 μm above the surface. The probe was calibrated against a Preston tube
(using the calibration of Patel 1965) in a standard zero-pressure-gradient turbulent
boundary layer on the floor of the wind tunnel, with the calibration measurements
fitted to a polynomial of the form τw =A+ B1/T + C(1/T )2 + D(1/T )3, where T is
the time of flight of each sample and the overbars denote time averages, the flow
being turbulent. A, B, C and D are calibration constants also obtained using the
method of least squares. Once calibrated, the probe is in effect an absolute device
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for measuring wall shear stress. The accuracy of the calibration for the mean shear
stress τW is expected to be within about ±3 %. The cosinal response of the wall shear
stress probe exceeded ±85◦; the associated errors are negligible. It is important (for
the shear stress probe) for the quadratic and cubic terms to be calculated correctly

(rather than using 1/T
2
and 1/T

3
which gives an error of about 4 %); there is no

difficulty in doing this.
The finite length l of the wires (of the shear stress probe) results in a spatial

averaging of the structures detected by the probe, having a significant effect on the
mean square of the fluctuating velocity. The non-dimensional length lu′

τ /ν was in the
range 18–30. Effects of spatial averaging are discussed by Castro, Dianat & Bradbury
(1987) and Dengel, Fernholz & Hess (1986) for boundary layers and by Hancock
(1999), where the last concludes that beneath separated flows spatial averaging by
the present probe should have amounted to not more than about an 8 % reduction
in τ ′ at lu′

τ /ν = 30, where τ ′ is the r.m.s. of the wall shear stress fluctuation. This is
substantially less than it would be for a boundary layer because large-scale motions
generated in the overlying shear layer play a much larger role in the near-wall motions
(Adams & Johnston 1988; Fernholz 1994; Na & Moin 1998). The effect on the mean
wall shear stress was negligible. Based on the height s of the wires above the surface
(nominally 0.05 mm) the non-dimensional height of the wires su′

τ /ν did not exceed
0.7. As discussed by Hancock (2005, 2007), the viscous sublayer for the fluctuations
is not linear, even at this small distance. Nevertheless, the error in τ ′ will not have
exceeded 10 %, at most.

The pulsed-wire probe and flow-visualization were used to measure the location
of the attachment line. In a two-dimensional coplanar flow this is straightforward in
that it corresponds to the position at which the shear stress vector is parallel to the
(known) separation line. In less special circumstances it is necessary to measure the
shear stress vector direction and locate the line along which the vectors converge to
form the attachment line (the shear stress perpendicular to the attachment line is zero,
and non-zero along it, except at singularities). However, as there were only relatively
few lateral measurement stations, oil-flow visualization and the ink-dot method of
Langston & Boyle (1982) were the primary means of locating the loci of the limiting
streamlines. The pulsed-wire measurements were in good agreement with streamline
direction so obtained.

As noted earlier, both the velocity probe and the wall shear stress probe measure
only one component of velocity or shear stress. It is therefore necessary to rotate
these probes to obtain orthogonal components and associated cross products. For the
mean velocities U and W:

Uθi
= U cos(θi) + W sin(θi), (2.1)

where Uθi
is the mean velocity measured by the probe at some angle θi to a reference

direction. By subtracting the instantaneous from the mean it is straightforward to
show that the mean square velocity fluctuation u2|θi

, measured by the probe at angle
θi to the reference direction, is given by

u2|θi
= u2 cos2(θi) + uw sin(2θi) + w2 sin2(θi), (2.2)

where u2, uw and w2 are Reynolds stresses, obtained by a least squares fitting routine,
as were U and W. Typically, five angles of pitch (for u ∼ v products) and five angles
of yaw (for u ∼ w products) were employed at intervals of 20◦ from zero so as to
provide redundancy of measurement, which is desirable in pulsed-wire anemometry as
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it provides a self-consistency check on the angle sensitivity. The angles were selected
so that the flow direction onto the probe was close to optimal with respect to the
response cone. Mean flow directions in excess of ±45◦ with respect to the probe flow
axis were excluded, which meant that sometimes only four of the five orientations
were used. The uncertainty in u2|θi

against that from the fitting routine was about
±5 %. The corresponding equation for the third-order moments involves four terms
on the right-hand side, requiring four or more distinct angles. These moments are not
given here, as additional redundancy would have been preferred.

A similar expression to that of (2.1) arises for the mean wall shear stresses, τx and
τz:

τθi
= τx cos(θi) + τz sin(θi). (2.3)

And for the mean square of the measured wall shear stress fluctuation τ ′2|θi
, the

relationship is

τ ′2|θi
= τ ′2

x cos2(θi) + τ ′
xτ ′

z sin(2θi) + τ ′2
z sin2(θi), (2.4)

where τ ′2
x and τ ′2

z are the mean squares of the fluctuating wall shear stresses in the x

and z directions, respectively, and where τ ′
xτ ′

z represents the correlation of the wall
stress fluctuations. Again, a least-squares fitting routine was used, though generally
with fewer probe orientation angles necessary. Fitting errors were negligible for the
fluctuating wall shear stress measurements,

Each measurement of the left-hand sides of (2.1)–(2.4) was obtained from 5000
samples over 170 s, equivalent to in excess of 6000 time scales based on the free-
stream velocity and bubble length (XA). This was sufficient to provide smooth fits to
to these equations and smooth profiles of mean and second-order moments; in effect
the terms on the right-hand sides of (2.1)–(2.4) were obtained from at least 20 000
samples.

Measurements were made in planes at seven lateral positions z, namely −40, 0, 40,
80, 120, 200 and 380 mm, where z is defined in figure 3, or, in terms of hf , z/hf =−4,
0, 4, 8, 12, 20 and 38, all but the last being where lateral variations were expected to
be significant, as inferred from the surface streamlines. All locations coincided with
a system of slots and instrumentation plugs in the splitter plate surface, allowing the
wall shear-stress and through-wall probes to be placed at any streamwise position x
from 4hf to 40hf . The plane at z = −40 mm, by comparison with that at z = +40 mm,
was used only in preliminary measurements to confirm symmetry in the flow.
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z/hf 0 4 8 12 20 38

X/hf 25.9 24.5 23.5 23 22 21
X/X 0 1 0.95 0.91 0.89 0.85 0.81

Table 1. Distance to the attachment streamline.
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3. Results and discussion
3.1. Mean flow

The coordinate axis system used for presenting the results is given in figure 3, and
unless otherwise stated ‘wind tunnel axes’ x–z are used throughout. y is perpendicular
from the splitter-plate surface, and zero on it.

Measurements were made at five streamwise stations, nominally at x/X =0.25,
0.5, 0.75, 1 and 1.25, at six lateral positions of z/hf = 0, 4, 8, 12, 20 and 38, where
x/X =1 is the position of the attachment line at each lateral position, as measured
by the pulsed-wire wall shear stress probe. X is given in table 1, normalized by hf

and by X on the centreline, X0, and in figure 4(a), where it can be seen that in
the spanwise-invariant region it is 19 % less than on the centreline, where it is a
maximum. As will be seen, W, uw and τz are all zero on z = 0, within the uncertainty
of measurement. The surface flow visualization, figure 2, also showed the flow to be
closely symmetrical.

Figure 4 also summarizes the shape of the bubble in terms of its height Hb defined
in terms of the height at which U is 0.95 of the local maximum. Figure 4(b) shows
the height at two streamwise stations, x/X = 0.5 and 1.0, from which it can be seen
that the variation in height is larger at the second station. The variation in height at
the mid-position is also shown in figure 4(a), but as a fraction of the height on the
centreline Hb0. Clearly, the variation in height is notably larger than the variation in
the distance to attachment, though qualitatively this is not surprising in that there
has to be an ‘outflow’ from the rear of the bubble, as described earlier in § 1 and
illustrated in figure 1. Figure 4 shows little variation in bubble height with z, beyond
z/hf = 20.

Figure 5 shows the pressure coefficient, defined as Cp = (p − pr )/(1/2)ρU 2
r , on the

splitter-plate surface, where pr is the static pressure at the reference station. As
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Figure 5. Variation of pressure coefficient with (a) x/hf and (b) z/hf . The vertical lines in
(a) show X/hf for the six lateral stations.

expected, the pressure is higher on and near z = 0 than it is at z/hf = 38. However,
this persists for only part of the flow. Beyond about half a bubble length downstream
the pressure is lower on and near z = 0. The limiting streamlines on the splitter as
inferred from both surface oil flow and the ink-dot method are shown in figure 2. A
line of secondary separation will have existed, as given by McCluskey, Hancock &
Castro (1991), but was not picked out in the interpretation of the surface-flow patterns
obtained here. Their work showed the secondary separation lines in the spanwise-
invariant regions merging into foci singularities, one each side of the centreline and
no secondary separation on the centreline. Figure 6 shows the mean wall shear stress
coefficients, Cf x and Cf z, as obtained from the wall shear stress probe, where the wall
shear stresses are normalized by (1/2)ρU 2

r . Cf z is satisfyingly close to zero on z = 0,
though the scatter from one point to the next is an indication of the uncertainty in
Cf z. (Cf z is obtained by difference, and errors can compound rather than cancel.)
The streamwise wall shear stresses are generally lower in the central region than in
the spanwise invariant region, as might be anticipated in terms of the greater height
of the bubble, except for z =0. Extrapolation of these profiles to smaller x indicates
secondary separation except on the centreline. Figure 7 shows the negative peak
magnitudes of Cf x and Cf z. Ideally, given the change in Cf x between z/hf = 20 and
z/hf = 38, there would have been another station between these two positions; in the
absence of one it is supposed that Cf x continues to increase fairly steeply outside
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z/hf = 20. A plausible curve can be drawn through the points for Cf x and, with an
allowance for the uncertainty just mentioned, a plausible curve can be drawn through
the points for Cf z, such that their gradients are zero at z/hf =38.
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Although a measure of the turbulence rather than the mean flow, it is convenient
at this point to introduce the coefficients for the fluctuation in wall shear stress, C ′

f x

and C ′
f z, defined as the r.m.s. of τ ′

x and τ ′
z, normalized by ( 1

2
)ρU 2

ref. These are shown
in figure 8, where they are seen to be very comparable in magnitude, suggesting
the fluctuation magnitudes at any particular location are only weakly dependent on
direction. Interestingly, C ′

f x and C ′
f z are smallest on the centreline, unlike Cf x , and

are consistent with the idea that shear-stress fluctuations are driven primarily by the
large-scale structures in the outer flow, which are furthest from the surface at this z
location. By way of example, it is obvious that the mean and fluctuating stresses are
not linked as Cf z is zero on the centreline.

Profiles of the mean velocities, U, V, W are shown in figure 9, for all x and z
stations. Notice that the profiles of W on z = 0 are also satisfyingly close to zero,
a necessary condition for flow symmetry, though no such assumption was made in
obtaining W, and neither was it in obtaining Cf z. The U profiles show the greater
height of the bubble near the centreline. Also, this greater height is seen to cover a
wider lateral extent at each successive x station. At the first station (x/X ≈ 0.25) all
but the profile on z = 0 are close together, whereas at the last station (x/X ≈ 1.25)
at least three of the lateral stations show a clear difference from those at z/hf =20
and 38 – the region of influence on U gets wider. There is a curious contrast with
the profiles of W. At the first station all the profiles differ, while at the last station
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Figure 9. Mean velocity profiles, U, V and W, at the five streamwise stations.
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the outer four profiles fall close to each other. Thus the region over which W is
influenced gets narrower with each successive station. The variation of the inward
lateral mean velocity W (< 0) is summarized in figure 10 in terms of the maximum
negative velocity.

These profiles in figure 9 show, as expected, that U is larger than upstream free-
stream speed Ur above the bubble, where W is positive, rather than negative. There is
virtually no variation in the maximum U with z, even though a thicker bubble might
be expected to give a larger U. The fact that W is positive near and above the bubble
edge is, perhaps surprising at first sight. However, it is straightforwardly explained
by the inviscid acceleration of the component of velocity in a direction normal to the
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fence. This velocity has a component contributing to W, where this contribution is
larger near the front of the bubble. Nearer the surface W is negative, providing the
expected inflow towards the central region.

The profiles of V are broadly close together, except that on z = 0, which becomes
progressively more positive with downstream distance relative to the others at the
same streamwise location. The last feature is consistent with the increased height of
the bubble. To aid visualization of the mean velocity field, figure 11 shows a vector
diagram over a region covered by the first four x- and z-wise stations.
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A feature that was not anticipated is the larger reverse-flow velocity seen in U at
x/X = 0.25 and less so at x/X =0.5, near the centre (figures 9ia and 9ib). In a two-
dimensional coplanar flow the reverse flow is driven by the entrainment requirement
of the overlying free shear layer, aided by a favourable pressure gradient. Here, the
favourable pressure gradient is less strong in the central region, as can be seen from
figure 5, and entrainment into the shear layer is also provided by the lateral inflow
from the sides (as seen in the profiles of W). One possibly linked fact is that there is
no secondary separation on z = 0, the surface limiting streamlines forming into two
contra-rotating foci singularities of separation either side of the centreline, as outlined
earlier. Certainly, the sense of rotation of these foci is consistent with an induced
increase in negative U.

The mean velocities U and W can be re-expressed with respect to axes aligned with
the angle of the fence, (‘fence’ axes, rather than the ‘tunnel’ axes). If a prime denotes
these velocities then

U ′ = U cos(θ) + W sin(θ) and W ′ = W cos(θ) − U sin(θ),

where θ denotes the sweep angle, the angle between z and z′ (figure 3). Because the
sweep angle is small and W is also relatively small, profiles of U ′ are very close in
shape to the profiles of U , and so are not presented. However, the profiles of W ′

are very different from those of W . Figure 12 shows profiles of W ′ normalised by
W0 = Ur sin(θ), together with profiles of flow direction, tan−1(W/U ) – where W and
U are the velocities in wind tunnel axes. The x ′–z′ axis system is a natural one behind
a swept separation line where, by definition, profiles would be invariant with lateral
position in a spanwise-invariant flow, but is not a particularly natural one in the
current flow, or not obviously so. Nevertheless, some notable observations emerge
that are not seen from the earlier profiles, and are set out next. Note, well above the
surface W ′/Wo approaches −1, since W approaches zero and U approaches Ur (if we
ignore the small effect of wind tunnel blockage).

At the first x station (∼0.25) the profile for z/hf =38 is seen to have a dip in
magnitude near y/hf of about 2.7. The profile at z/hf = 20 shows a similar feature,
and the profiles at z/hf = 12 and 8 show a clear development of the trend, as do the
profiles at z/hf = 4, and z/hf = 0. At first, this dip, particularly at the outer-most
station seems rather odd. Why should the velocity parallel to the separation line in a
spanwise-invariant flow first decrease and then increase as the surface is approached?
Precisely the same sort of behaviour is very clearly present in the direct numerical
simulation of Kaltenbach & Janke (2000), though with little comment. The adjacent
part of figure 12 shows the corresponding flow-direction profiles. The flow direction
on z = 0, taking it to be a plane of symmetry, has to be either zero or –180◦. In each
case, except for this profile, the flow direction is very nearly zero above y/hf = 2.3
but, as can be seen from figure 9i(a), the U-component velocity has already decreased
appreciably at this height. Beneath this height, the flow direction changes rapidly. By
rewriting the above equation for W ′ as

W ′

W0

=
W

Uref

cos(θ)

sin(θ)
− U

Uref

it can be seen that if W is zero then
W ′

W0

= − U

Uref

,

and the profile of W ′ is like that of U; W ′ will decrease as U decreases. If, further in,
W becomes negative, the magnitude of W ′ must increase, and the profile of W ′ will
no longer follow that of U. Thus, in summary, the flow direction in the outer part
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of the shear layer remains very near zero. As a consequence, both W ′ and U ( ≈ U ′)
decrease in proportion. But, further in, the flow direction changes rapidly, with the
result that W ′ increases in magnitude (above what it would be were the flow direction
to remain zero). The marked change in gradient in the W ′ profiles is therefore linked
to the rapid change in flow direction that takes place within the shear layer. It seems
that, in effect, the outer side of the shear layer resists a crossflow that exists nearer
the surface.

The flow-direction profiles at the other four streamwise stations (figure 12iib–e)
also show markedly similar sets of profiles at all except the central lateral station.
There is no obvious reason why the flow direction profiles should exhibit similarity,
so it is taken as fortuitous. There is though, one noticeable feature, again taken
as fortuitous, that the flow direction is about zero above y/hf =2.3, as at the first
station. This height does not appear to relate to a particular feature in the profile
of U (or U ′). It does, however, relate to a marked change in the profiles of W ′.
Below this height, in nearly all profiles, W ′ either increases in magnitude or does not
decrease as rapidly as it was decreasing (above this height). The earlier measurements
of Hancock & McCluskey (1996) behind a fence swept at a larger angle of 25◦ also
showed a near-streamwise flow direction in the outer part of the shear layer, though
W ′ levelled out rather than increased with decreasing height. As to a mechanism for
this increase in W ′ seen at x/X =0.25, it is supposed that it is associated with the
reverse flow transporting ‘large’ W ′ from nearer reattachment, where, as anticipated,
W ′ is fairly constant (except close the surface, where it must go to zero). The reverse
flow (at the spanwise-invariant station) transports the large W ′, except further from
the surface where the shear layer has greater influence, maintaining flow direction
even where the velocity magnitude is reduced, the reduced magnitude implying a
reduced W ′ from what it is in the free stream, as explained earlier. On top of this,
there are the effects of the gradients ∂uw/∂x and ∂vw/∂y, which may be significant.
The latter is likely to be larger than the former on the basis that the bubble height is
significantly smaller than its length. If these gradients are negligible then W ′ behaves
as a passive contaminant, constant along streamlines in the y–x ′ plane, outside the
influence of viscous diffusion. That the flow direction remains constant in the outer
part of the shear layer is intriguing in itself, though the mechanism by which this
happens is not clear. The reverse flow becomes the flow that is entrained into the
shear layer but, in the earlier part of the bubble at least, this reverse flow appears to
be a largely separate entity from the overlying shear layer.

The last feature of the mean flow to consider for the present is the thickness
and position of the free shear layer. The gradient thickness is defined as
L =�U/(∂U/∂y)max, where �U is the difference between the maximum and minimum
in U, namely Umax − Umin, except downstream of attachment, where �U is Umax − Ui .
Upstream of attachment Umax − Umin is a sensible velocity difference to take as a
scale of the shear layer, sensible in that to a first approximation it ignores the near-
wall viscous layer. Downstream of attachment Umin is zero because U is everywhere
positive. Ui is the velocity at the outer edge of the wall viscous layer, and provides
a more sensible velocity from which to form �U , than one based on Umin. Ui has
been judged from where the velocity profiles make a clear change in gradient near
the surface. A height yc for the centre of the shear layer can be defined as the point
at which the velocity is equal to 0.67�U + Umin, which corresponds to the centre
of a plane mixing layer (see e.g. Castro & Bradshaw 1976), where downstream of
attachment Umin is replaced by Ui . Although the quantitative evaluation of Ui is of
course approximate, a more exacting definition would not alter the inferences drawn
here. Profiles of L/X and yc/X are given in figure 13, where the greater height of the
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Figure 13. Variation of gradient thickness L and shear-layer centreline yc with x/X.
Line in (a) is from Hancock (2000).

bubble near the centre can be seen in figure 13(b). Away from centreline the growth
in L is as observed in two-dimensional flows (e.g. Castro & Haque 1987; Jaroch &
Fernholz 1989; Hancock 2000), with a marked decrease in the growth rate after
roughly 0.6X. Near the centre the growth rate remains much more nearly constant.
Here, the structures in the bulge are further from the wall (figure 13b) and so, it is
surmised, contribute less to the reverse flow.

3.2. Reynolds stresses

Four Reynolds stresses, namely u2, w2, v2 and −uv are given in figure 14 at the same
streamwise and lateral stations as the mean velocity profiles. u2 and w2 are plotted to
the same scale as each other, as are v2 and −uv, while uw, which is much smaller in
magnitude, is given separately in figure 15. w2, though smaller than u2, has profiles
that are comparable in shape, except at x/X =1.25, where there is very little rise with

distance from the surface compared with that seen in u2. Generally, the peak in a
profile of u2 is further from the surface than is the peak in the corresponding profile
of w2. Broadly, near the centre (i.e. near z = 0), the profiles reach higher levels and
the profile outer edges are further from the surface than they are at stations further
from the centre. The greater distance of the profile edges is as to be expected from
the mean flow, of course. Another notable feature is that, at each x/X, the profiles of

u2 converge near the surface to very comparable levels, and the same is seen in the
w2. Moreover, at each x/X, the levels of u2 and w2 near the surface are close to each
other even though the peak levels further out are significantly different. Indeed, at the
last streamwise station, w2 is a little larger than u2. Turning to −uv, the profiles of
this shear stress are quite close in shape to those of u2. The profiles of v2 also show
greater bubble height near the centre, but are more varied than the other Reynolds
stresses.

As already noted, uw is much smaller in magnitude than other stresses, as might
be anticipated for moderate three-dimensionality. Satisfyingly, uw is close to zero on
z = 0, all except for a small number of points, which is attributed to statistical error.
The negative uw seen at z/hf = 4 for the last three stations stands out from the
rest, but is probably genuine. At this station the lateral slope of the overlying shear
layer, as inferred from the variation in bubble height with z, is large. If, locally, the
shear layer behaves as a two-dimensional shear layer but at an angle φ to the surface
(in the y–z plane), then uw ∼ uv′ sin(φ), where v′ is the fluctuation perpendicular to
the shear layer. From figure 4(b), φ is roughly 11◦; with −uv′ typically ∼0.02U 2

r ,
uw is about −0.004, which is very comparable with that seen in figure 15. The only
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by U 2
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Symbols are as in Part i.
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other point to note here regarding the profiles in this figure, is the consistent small
positive peak at the first four stations. This peak moves inwards slightly with each
successive station, and is perhaps linked to the slight inward movement in the peak
of w2.

Peak levels of Reynolds stresses are given in figure 16, as functions of z, and
figure 17 gives peak levels of the turbulence kinetic energy. The general trend of these
profiles is to show a decrease in the level of the Reynolds stresses as z/hf decreases
from z/hf = 38 to where they are a minimum at about z/hf =20, with the exception

of w2 which shows a minimum further in at about z/hf =10, over the length of the
bubble. Nearer to centreline the levels rise. The decrease in turbulence levels is to
be expected from the negative spanwise stretching, i.e. negative ∂W/∂z, tending to
decrease turbulence intensities. The rise in turbulence levels is therefore particularly
interesting. The x-direction wall shear stress (figure 6a) also shows a decrease and a
subsequent increase, with decreasing z. Both wall shear stress fluctuations show, in
figure 8, a decrease in their r.m.s. levels with decreasing z until z/hf = 12 and 8, where
they differ little. Further in, both r.m.s. levels first rise consistently, before falling to
the lower levels seen on z =0.
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3.3. Strain rates

The turbulence in the separation bubble is subjected to, in principle, all nine strain
rates, and it is useful to consider some of these in relation to features seen in the
turbulence. As a general point it should be remembered that the response to various
strain rates is not a simple one, that the turbulence is generally not in a state of
equilibrium with any particular strain rate unless the strain rate is sufficiently small.
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For convenience of discussion, the bubble can be divided into two parts – the
‘central region’ inside z/hf = 20 and the ‘intermediate region’ between z/hf = 20
and 38, where z/hf = 20 corresponds to z/X ∼ 1. This intermediate region could
be regarded as a perturbation of the (nominally) spanwise-invariant flow further
out. Here, the ratio of maximum strain rates, (−∂W ′/∂z′)max /(∂U/∂y)max , where W ′

and z′ are parallel to the fence, is about 0.004, and shows the sensitivity of the
turbulence levels to this strain rate, the stresses having decreased by roughly 20 %. In
a spanwise-invariant region this ratio is zero, by definition.

In the central region the strain rates are more complex. Figure 18 shows profiles of
W at fixed heights in 5 mm intervals (intervals of 0.019X0) against z, at three positions
from the V apex. These have been obtained from interpolation of the profiles W given
in figure 9. While ∂W/∂z is mostly negative everywhere, it is positive in the outer part
of the flow near the centreline. The strength of this positive ∂W/∂z decreases with
downstream distance, but the lateral extent over which it is positive moves outwards,
because the peak in W moves outwards. Figure 21 shows V at the same intervals.

Figure 19 shows contours of strain rate, ∂W/∂z, together with the locus of the
shear-layer centreline defined by the height yc, and the line of maximum k, on planes
at z = 0 and z/hf =4. On and near z = 0, ∂W/∂z is positive over the shear layer
centreline for the whole of the bubble length, and would account for the increase in
Reynolds stresses. Figure 20 summarizes these plots in terms of (∂W/∂z)/(∂U/∂y),
where the gradients are evaluated where k is a maximum.

Now, of course, ∂W/∂z is not the only strain rate extra to ∂U/∂y. Clearly, the
shear layer is subjected to positive lateral divergence, but it is also curved, where the
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curvature of shear layer in the x–y plane can be described by ∂V/∂x. Figure 22 shows
∂W/∂z and ∂V/∂x along the shear-layer centreline at, respectively, five and six lateral
positions, where they have been normalized by ∂U/∂y, also along the shear-layer
centreline, to provide a proper measure of relative effect. In each case (∂V/∂x)/(∂U/∂y)
(figure 22b) is negative until near reattachment, implying a stabilizing sense of
curvature, but of particular significance is the fact that there is very little difference
between (∂V/∂x)/(∂U/∂y) on one x–z plane and another. The slight variation that
can be seen is comparable with the cumulative uncertainty in the measurements
and calculation of the gradients. Thus, the curvature, and presumably the effects
of curvature, do not vary significantly with z. Figure 22(a) shows (∂W/∂z)/(∂U/∂y)
reaches 0.05 at about x = 0.4XA on the centreline. Although this ratio decreases
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substantially after this it nonetheless remains positive. A positive peak is seen on
z/hf = 4 at about x = 0.6XA and on z/hf = 8 at about x = 0.8XA, at which point
(∂W/∂z)/(∂U/∂y) is about the same positive level on each of the three in-most x–y
planes (i.e. z/hf = 0, 4 and 8). Further out (∂W/∂z)/(∂U/∂y) is entirely negative.

Now ∂V/∂z is associated with the curvature of the shear layer in the y–z plane.
Clearly, the curvature is not zero because of the central ‘bulge’ in the bubble.
The magnitude of ∂V/∂z is comparable with the magnitude of ∂W/∂z, as can
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be inferred from figures 20 and 22. However, the effect of this type of curvature
appears to be negligible, as is generally the case; boundary layers on the outside of
a streamwise cylinder, for example, are very comparable to boundary layers on flat
plates (Fernholz & Warnack 1998); the mixing layer on the edge of an axisymmetric
(irrotational) jet, upstream of interaction is very close to that of a plane mixing
layer (Johnson & Hancock 1991). As there is no clear indication to the contrary, the
assumption here is that the effect of ∂V/∂z is negligible. Moreover, while the effects
of ∂V/∂x can be linked to stabilizing or destabilizing effects of mean streamline
curvature, there is not the same association with ∂V/∂z when, as here, the streamlines
lie predominantly or entirely on x–y planes. The strain rate ∂W/∂z is of course linked
to the other two direct strain rates, ∂U/∂x and ∂V/∂y, through the continuity equation.

3.4. Mixing layer scaling

Qualitatively, the outer part of a separated flow is like a plane free shear layer, but
subjected to fluctuating strain on its low speed side by the turbulence in the reverse
flow, and to mean streamline curvature. However, as has been observed before, there
is a degree of quantitative similarity, at least on the outer, ‘high-speed’ side, where the
scaling is based on (y − yc)/L and Umax − Ui , for the velocity scale, where yc and L
were defined earlier. Figure 23 shows a comparison between the present measurements
of turbulence kinetic energy and those of the mixing layer of Johnson & Hancock
(1991). It can be seen there that there is close agreement with the mixing layer for
y >yc over the first three-quarters of the bubble, independent of lateral position.
Further downstream the peak levels become progressively larger than they are in the
mixing layer, with a less extensive but still marked concurrence.

4. Concluding remarks
As mentioned in § 1, the overall intention was to set up a basis for improving the
general understanding of the physics of three-dimensional separated flows where the
flow is predominantly driven by Reynolds stress gradients. A specific aim of the
work was to set up a separated and reattaching flow that had fully three-dimensional
features, but had a systematic link to a two-dimensional (coplanar) counter part. Both
the specific aim and the general intention have been achieved. At this juncture in the
paper we merely wish to focus on some salient points.

The degree of the three-dimensionality might be described as mild in that the
crossflow mean velocities were significantly less than the free-stream velocity. In the
case here this velocity ratio was roughly 0.15. Even so, the effect was to increase
the bubble height by a factor of roughly 1.7 (figure 4b) near attachment, and suggests
that a weak crossflow would still have a significant effect, where weak might be a
velocity ratio of, say, 0.02. If the relationship between height and velocity ratio were
linear this would correspond to an increased height of about 10 %. For the present it
is supposed that a strong degree of three-dimensionality would be when the velocity
ratio is roughly unity, and very strong for a significantly larger ratio.

Even though the degree of three-dimensionality was mild, the effect on the mean
flow and the turbulence structure was substantial. It remains to be seen how well
this type of flow can be predicted and whether, for example, methods that do well
in two-dimensional flow do well in this case. The flow was found to be symmetrical
about the geometrical symmetry plane – a feature that was useful in the experiments –
and could be subdivided for into two subregions, a central region and an intermediate
region, inside the spanwise invariant region. In the latter of these two the flow was



368 J. R. Hardman and P. E. Hancock

(a)

0.01

0.02

0.03

0.04

0.05

0.06
(b)

(c)

(d)

(e)

 0
4
8
12
20
38
Johnson & 
Hancock (1990)

z/hf 

0.01

0.02

0.03

0.04

0.05

0.06

0.01

0.02

0.03

0.04

0.05

0.06

–1.5 –1.0 –0.5 0 0.5 1.0 1.5 –1.5 –1.0 –0.5 0 0.5 1.0 1.5

–1.5 –1.0 –0.5 0 0.5 1.0 1.5

–1.5 –1.0 –0.5 0 0.5 1.0 1.5

–1.5 –1.0 –0.5 0 0.5 1.0 1.5

k/ΔU2

0.01
0.02

0.03

0.04
0.05

0.06

0.07
0.08

0.09

0.01

0.02

0.03

0.04

0.05

0.06

(y – yc)/L

(y – yc)/L

(y – yc)/L

Figure 23. Turbulent kinetic energy k in plane mixing layer coordinates.
(a) x/X = 0.25; (b) 0.5; (c) 0.75; (d) 1.0; (e) 1.25.

largely converging, making ∂W/∂z predominantly negative, and leading as would be
anticipated to a suppression of the level of turbulence – it might be regarded as
a perturbation of the spanwise-invariant region it adjoined. The central subregion
extended laterally about one bubble length either side of the centreline, leading to
substantial gradients in the lateral direction. It was marked by increased levels of
turbulence, attributable at least in part to streamline divergence, that is, positive
∂W/∂z, and a more complex flow structure. A distinctive feature was seen in the flow
direction as inferred from velocity vectors in the x–z plane. The streamlines remained
very nearly unchanged from the free-stream direction in the outer part of the overlying
shear layer, that is, above about 2hf (about 0.09X). The same behaviour has been seen
in a spanwise-invariant flow (Hancock & McCluskey 1996). Beneath this height there
was a rapid change in direction which, as it happened, was largely independent of z.

A referee suggested that the variation in reattachment length seen here might depend
on the stability of the laminar shear layer after separation. The inviscid analysis of
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Huerre & Monkewitz (1985) shows that stability is controlled by the parameter
(U1 − U2)/(U1 + U2), where U1 and U2 are the free-stream velocities either side of the
layer. (If it exceeds 1.315 a free shear layer is absolutely unstable and disturbances
propagate upstream as well as downstream, or is convectively unstable.) The present
shear layer is significantly different in that it is curved rather than planar, and is
subjected to turbulent motions on its underside. The analysis of Alam & Sandham
(2000) for a short separation bubble shows that the threshold for absolute instability
increases from 1.15 with decreasing Reynolds number. Apart from noting that the
above ratio varies between about 1.36 and 1.73 at the first station (x/X = 0.25), it is
not possible to pursue this idea much further with the data available here.
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